Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
这道题目和前面的62是同一样的题目,所以就放在一起来写了。题目的意思是要找出机器人在一个m*n的矩阵中到达对角的所有可能。
而63和62所不同的是,题目中设置了障碍,当遇到障碍的时候,这条路就是走不通的情况。
题目的解决方法是用动态规划来解决的。如果能注意到,其中每个点的总路数其实是它的上面那个点的路数与左边路数之和。
问题是好解决的。而在本道题目中,在遇到障碍的时候,将那一个具体格置为0即可。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
int [][]path=new int[m][n];
for(int i=0;i<m;i++){
if(obstacleGrid[i][0]!=1){
path[i][0]=1;
}else{
break;
}
}
for(int i=0;i<n;i++){
if(obstacleGrid[0][i]!=1){
path[0][i]=1;
}else{
break;
}
}
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(obstacleGrid[i][j]==1){
path[i][j]=0;
}else {
path[i][j]=path[i-1][j]+path[i][j-1];
}
}
}
return path[m-1][n-1];
}
}